Home
Class 12
MATHS
solve abs(x^(2)-1+sinx)=abs(x^(2)-1)+abs...

solve `abs(x^(2)-1+sinx)=abs(x^(2)-1)+abs(sinx)`, where `x in [-2pi,2pi]`.

Text Solution

Verified by Experts

The correct Answer is:
`x in [-2pi,-pi] cup [-1,0] cup [1,pi]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 2cos^(2)x+3sinx=0 .

solve :sin^-1x+sin^-1 2x=pi/3

Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

Evaluate int_(-1)^(2)abs(x^(3)-x)dx

Prove that (sinx-sin3x)/(sin^(2)x-cos^(2)x)=2sinx

Find the simplified form of cos^(-1)(3/5cosx+4/5sinx),"where "x in[(-3pi)/4,pi/4] .

Let f(x)=abs(x-1)+abs(x-2)+abs(x-3)+abs(x-4), then least value of f(x) is

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is