Home
Class 12
MATHS
The domain of the function f(x)=(log(4...

The domain of the function
`f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2)` is
(where [x] denotes greatest integer function)

Text Solution

Verified by Experts

The correct Answer is:
Domain `in (-2,1) cup (1,2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

Sum of all the solution of the equation ([x])/([x-2])-([x-2])/([x])=(8{x}+12)/([x-2][x]) is (where{*} denotes greatest integer function and {*} represent fractional part function)

The domain of the function f(x)=log_(10)(sqrt(x-4)+sqrt(6-x)) is

Find the domain and range of the following function: f(x)=log_([x-1])sinx, where [ ] denotes greatest integer function.

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

The domain of the function f given by f(x)= (x^(2) + 2x + 1)/(x^(2)-x-6)

The domain of the function f(x) is denoted by D_(f)

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Find domain of the function f(x)=1/(log_10 (1-x)) +sqrt(x+2)