Home
Class 12
MATHS
f(x)= 1/sqrt([x]+x), where [*] denotes t...

`f(x)= 1/sqrt([x]+x)`, where `[*]` denotes the greatest integeral function less than or equals to x. Then, find the domain of f(x).

Text Solution

Verified by Experts

The correct Answer is:
Domain f(x)=`phi`
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Solve the equation x^(3)-[x]=3 , where [x] denotes the greatest integer less than or equal to x .

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

lim _(x rarr 1) (xsin(x−[x])) /(x-1) ​ , where [.] denotes the greatest integer function, is equal to

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x) = [x] , where [*] denotes greatest integral function. Then, check the continuity on (1, 2]

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.