Home
Class 12
MATHS
Find the domain of function f(x)= (1)/([...

Find the domain of function `f(x)= (1)/([abs(x-1)]+[abs(7-x)]-6)` where `[*]` denotes the greatest integral function .

Text Solution

Verified by Experts

The correct Answer is:
Domain `f(x) in R-{(0,1) cup {1,2,3,4,5,6,7} cup (7,8)}`
Promotional Banner

Similar Questions

Explore conceptually related problems

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

Find the domain and range of the following function: f(x)=log_([x-1])sinx, where [ ] denotes greatest integer function.

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

Find the domain of the following functions. f(x)= (1)/(sqrt(x-|x|))

If the function of f(x) = [((x-5)^(2))/(A)]sin(x-5)+a cos(x - 2),"where"[*] denotes the greatest integer function, is continuous and differentiable in (7, 9), then find the value of A

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.