Home
Class 12
MATHS
Find the period of f(x)=abs(sinx)+abs(co...

Find the period of `f(x)=abs(sinx)+abs(cosx)`.

Text Solution

Verified by Experts

The correct Answer is:
period of f(x) is `pi/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

Find period of f(x)=tan3x+sin(x/3) .

Find the period of f(x)=cos^(-1)(cos x)

Find the period of "cos"(cosx)+cos(sinx)dot

Find the period of f(x)=sinx+tanx/2+sinx/(2^2)+(t a n x)/(2^3)+.......+sinx/(2^(n-1))+tanx/(2^n)

Find the derivative of (x^(5)-cosx)/(sinx)

Find the derivative of (x^(2)-cosx)/(sinx)

bb"Statement I" The period of f(x)=2cos""1/3(x-pi)+4sin""1/3(x-pi) " is " 3pi . bb"Statement II" If T is the period of f(x), then the period of f(ax+b) is T/abs(a) .

Find the range of f(x)=sqrt(log(cos(sinx)))

Find the period f(x)=sinx+{x}, where {x} is the fractional part of xdot