Home
Class 12
MATHS
Find the period of f(x)=cos^(-1)(cos x)...

Find the period of `f(x)=cos^(-1)(cos x)`

Text Solution

Verified by Experts

The correct Answer is:
`2pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

Find the period of "cos"(cosx)+cos(sinx)dot

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

Period of f(x) = sin^4 x + cos^4 x

bb"Statement I" The period of f(x)=2cos""1/3(x-pi)+4sin""1/3(x-pi) " is " 3pi . bb"Statement II" If T is the period of f(x), then the period of f(ax+b) is T/abs(a) .

Find the range of f(x)=sqrt(log(cos(sinx)))

Find period of f(x)=tan3x+sin(x/3) .

Find domain for, f(x)=cos^(-1)[x] .

Range of f(x)= (1)/(1- 2 cos x) is

Find the value of cos(sec^(-1)x+cosec^(-1)x),|x|ge1