Home
Class 12
MATHS
The period of f(x)=cos(abs(sinx)-abs(cos...

The period of `f(x)=cos(abs(sinx)-abs(cosx))` is

A

`pi`

B

`2pi`

C

`pi/2`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the period of f(x)=abs(sinx)+abs(cosx) .

Find the period of f(x)=cos^(-1)(cos x)

Range of the function f(x)=sqrt(abs(sin^(-1)abs(sinx))-cos^(-1)abs(cosx)) is

Find the period of "cos"(cosx)+cos(sinx)dot

The number of values of y in [-2pi,2pi] satisfying the equation abs(sin2x)+abs(cos2x)=abs(siny) is

If z=x+iy and x^(2)+y^(2)=16 , then the range of abs(abs(x)-abs(y)) is

bb"Statement I" The period of f(x)=2cos""1/3(x-pi)+4sin""1/3(x-pi) " is " 3pi . bb"Statement II" If T is the period of f(x), then the period of f(ax+b) is T/abs(a) .

The derivative of f(x)=cos^(-1)((1)/(sqrt3)(2cosx-3sinx))+sin^(-1)((1)/(sqrt3)(2cosx+3sinx)) w.r.t. sqrt(1+x^(2)) at x=(1)/(sqrt3) is.........