Home
Class 12
MATHS
f(x)=log(x^(2)) 25 and g(x)=log(x)5. The...

`f(x)=log_(x^(2)) 25 and g(x)=log_(x)5.` Then f(x)=g(x) holds for x belonging to

Text Solution

Verified by Experts

The correct Answer is:
`x in (0, infty)-{1}`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log_x(lnx) then f'(x) at x=e is

f(x)=log_(3)(5+4x-x^(2)) . find the range of f(x).

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x) .

If f(x)=|log_(e)|x||," then "f'(x) equals

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

If f and g are real functions defined by f(x)= x^(2) + 7 and g(x)= 3x + 5 . Then, find each of the following (f(t)- f(5))/(t-5) , if t ne 5

f(x)=log_(e)x, g(x)=1/(log_(x)e) . Identical function or not?

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

If f and g are real functions defined by f(x)= x^(2) + 7 and g(x)= 3x + 5 . Then, find each of the following f(3) + g(-5)