Home
Class 12
MATHS
Which pair of functions is identical? ...

Which pair of functions is identical?
`(a)sin^(-1)(sinx) ,sin(sin^(-1)x)`
(b)` log_(e)e^(x),e^(log_(e)x)`
(c)`log_(e)x^(2),2log_(e)x`
(d)None of the above

A

`sin^(-1)(sinx) " and " sin(sin^(-1)x)`

B

`log_(e)e^(x),e^(log_(e)x)`

C

`log_(e)x^(2),2log_(e)x`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(exlog_(e)x)+(log_(e)x)(e^(exlog_(e)x)))dx=...+c

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x) .

(d)/(dx)[log_(e)e^(sin(x^(2)))]= ......

f(x)=log_(e)x, g(x)=1/(log_(x)e) . Identical function or not?

Integrate the function is Exercise. cos^(3)x e^(log sinx)

The domain of definition of the function f(x)= sin^(-1){log_(2)((x^(2))/(2))} , is

if y=(xsinx)/(log_(e)x), then find (dy)/(dx)

Evaluate int 5^(log _(e)x)dx

Integrate the following functions : int(x^(e-1)+e^(x-1))/(x^(e)+e^(x))dx

Integrate the functions cot x log sin x