Home
Class 12
MATHS
Let g(x)=1+x-[x] "and ...

Let g(x)=1+x-[x]
`"and " f(x)={{:(-1","x lt 0),(0","x=0),(1","x gt 0):}`
Then, for all x, find f(g(x)).

Text Solution

Verified by Experts

The correct Answer is:
f(g(x))=1
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

If f(x)= {(x",",x in {0, 1}),(1",",x ge 1):} then, ……

f(x)= {((x)/(|x|)",","if" x lt 0),(-1",","if" x ge 0):}

The function f is defined by f(x)={(,1-x,x lt 0),(,1,x=0),(,x+1,x gt 0):} Draw the graph of f(x).

If f(x) = {{:(x - 3",",x lt 0),(x^(2) - 3x + 2",",x ge 0):} , then g(x) = f(|x|) is

f: R rarr R , f(x) ={{:(-1,xlt0,),(0,x=0 , g:R rarr R ","g(x)=),(1,xgt0,):} 1 + x - [x] then for all x, f (g(x)) = ........

If f(x)= {((x^(2))/(a)-a",",x lt a),(0",",x=a),(a-(x^(2))/(a)",",x gt a):} then, ………

If f(x) = {{:((sin^(-1)x)^(2)cos((1)/(x))",",x ne 0),(0",",x = 0):} then f(x) is

f(x)= {(2x",","if" x lt 0),(0",","if" 0 le x le 1),(4x",","if" x gt 1):}