Home
Class 12
MATHS
Let f :[1/2,oo)rarr[3/4,oo), where f(x)=...

Let `f :[1/2,oo)rarr[3/4,oo),` where `f(x)=x^2-x+1.` Find the inverse of f(x). Hence or otherwise solve the equation, `x^2-x+1=1/2+sqrt(x-3/4.`

Text Solution

Verified by Experts

The correct Answer is:
x=1 is the required solution.
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(x-1)/(x^(2)-2x+3) Find the range of f(x).

Let f:[-pi//2,pi//2] rarr [-1,1] where f(x)=sinx. Find whether f(x) is one-one or not.

If f(x)= 3x^(4)- 5x^(2) + 9 then find f(x-1) .

f(x)=sqrt((log(x-1))/(x^(2)-2x-8)) . Find the domain of f(x).

f(x)=sin^(-1)((3-2x)/5)+sqrt(3-x) .Find the domain of f(x).

f: [0,oo) rarr [0,oo) , f(x) = x/(1+x) then the function f is .........

If f(x)= x^(2 )+ 2x + 3 then find f(1), f(2), f(3)

f(x)+f(1-1/x)=1+x for x in R-{0,1}. Find the value of 4f(2).

f(x)= x^(2)-3x + 4 If f(x)= f(2x+1) find the value of x .

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0 then find f(x).