Home
Class 12
MATHS
f(x)+f(1-1/x)=1+x for x in R-{0,1}. Fi...

`f(x)+f(1-1/x)=1+x ` for `x in R-{0,1}.` Find the value of `4f(2).`

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Similar Questions

Explore conceptually related problems

If f : R-{-1}->R and f is differentiable function satisfies " f (x+f(y) +x f(y)) = y+f(x)+y.f(x) for all x,y belongs to R-{-1} then find the value of 2010 [ 1 +f(2009)]

f(x)= x^(2)-3x + 4 If f(x)= f(2x+1) find the value of x .

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The value of f(1) is

If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 and f(2)=2 and x,y, z epsilonR the value of lim_(xtooo)sum_(r=1)^(n)((4r)f(3r))/(n^(3)) is ……….

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of underset(x to -oo)(lim)f(x) is

If f is a function satisfying f (x +y) = f(x) f(y) for all x, y in N such that f(1) = 3 and sum _(x=1)^nf(x)=120 , find the value of n.

If f(x)=2x^(2)-3x+5 then find the approximate value of f(1.05) .

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

Let f:R->R be a function satisfying f((x y)/2)=(f(x)*f(y))/2,AAx , y in R and f(1)=f'(1)=!=0. Then, f(x)+f(1-x) is (for all non-zero real values of x ) a.) constant b.) can't be discussed c.) x d.) 1/x

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals