Home
Class 12
MATHS
Consider the function g(x) defined as g(...

Consider the function g(x) defined as `g(x)*(x^((2^(2008)-1)) -1=(x+1)(x^(2)+1)(x^(4)+1)...(x^(2^(2007))+1)-1` the value of g(2) equals ……. .

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the function is Exercise. (1)/((x^(2)+1)(x^(2)+4))

Value of ((x^(4)+x^(2)+1))/((x^(2)-x+1))-(x+1)^(2) is

The domain of the function f defined by f(x)= sqrt(4-x) + (1)/(sqrt(x^(2)-1)) is equal to

A function f(x) is defined by, f(x) = {{:(([x^(2)]-1)/(x^(2)-1)",","for",x^(2) ne 1),(0",","for",x^(2) = 1):} Discuss the continuity of f(x) at x = 1.

f:R to R is a function defined by f(x)= 10x -7, if g=f^(-1) then g(x)=

Integrate the functions 1/((x^(2)+1)(x^(2)+4))

If real function f(x) =(x+1)^(2) and g(x) =x^(2) +1 then (fog) (-3) = ..........

Consider the function f(x)=f(x)={{:(x-1",",-1lexle0),(x^(2)",", 0lexle1):} and " "g(x)=sinx. If h_(1)(x)=f(|g(x)|) " and "h_(2)(x)=|f(g(x))|. Which of the following is not true about h_(2)(x) ?

If the functions f(x)=x^(5)+e^(x//3) " and " g(x)=f^(-1)(x) , the value of g'(1) is ………… .