Home
Class 12
MATHS
Solve the system |x^(2)-2x|+y=1,x^(2)+|y...

Solve the system `|x^(2)-2x|+y=1,x^(2)+|y|=1`

Text Solution

Verified by Experts

The correct Answer is:
(x=0,y=1)(x=1,y=0) and (x=y=`(1-sqrt(5))/2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the system of equations {(|x-1|+|y-2|=1),(y=2-|x-1|):}

Solve the system of equations {:(2x+5y=1),(3x+2y=7):},

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

Solve the inequation -|y|+x-sqrt((x^(2)+y^(2)-1))ge1

If A=[{:(1,2,0),(-2,-1,-2),(0,-1,1):}] find A^(-1) . Using A^(-1) , solve the system of linear equations x-2y=10, 2x-y-z=8, -2y+z=7 .

If x=sint,y=sinKt then show that (1-x^(2))y_2-xy_(1)+K^(2)y=0 .

If A=[{:(2,-3,5),(3,2,-4),(1,1,-2):}] find A^(-1) . Using A^(-1) solve the system of equations 2x-3y+5z=11 3x+2y-4z=-5 x+y-2z=-3

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

The point (1,2) lies inside the circle x^(2) + y^(2) - 2x + 6y + 1 = 0 .