Home
Class 12
MATHS
The number of functions from f:{a(1),a(2...

The number of functions from `f:{a_(1),a_(2),...,a_(10)} rarr {b_(1),b_(2),...,b_(5)}` is

A

`10^(5)`

B

`5^(10)`

C

`(10!)/(5!)`

D

5!

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1: If f:{a_(1),a_(2),a_(3),a_(4),a_(5)}to{a_(1),a_(2),a_(3),a_(4),a_(5)} , f is onto and f(x)nex for each xin {a_(1),a_(2),a_(3),a_(4),a_(5)} , is equal to 44. Statement-2: The number of derangement for n objects is n! sum_(r=0)^(n)((-1)^(r))/(r!) .

If the arithmetic mean of a_(1),a_(2),a_(3),"........"a_(n) is a and b_(1),b_(2),b_(3),"........"b_(n) have the arithmetic mean b and a_(i)+b_(i)=1 for i=1,2,3,"……."n, prove that sum_(i=1)^(n)(a_(i)-a)^(2)+sum_(i=1)^(n)a_(i)b_(i)=nab .

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1),b_(2)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.

A person is to count 4500 currency notes. Let a_(n) denotes the number of notes he counts in the nth minute. If a_(1)=a_(2)="........"=a_(10)=150" and "a_(10),a_(11),"......", are in AP with common difference -2 , then the time taken by him to count all notes is

The number of all possible 5-tuples (a_(1),a_(2),a_(3),a_(4),a_(5)) such that a_(1)+a_(2) sin x+a_(3) cos x + a_(4) sin 2x +a_(5) cos 2 x =0 hold for all x is

The number of ways in which 10 condidates A_(1),A_(2),......,A_(10) can be ranked so that A_(1) is always above A_(2) , is

the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is

Statement 1 The sum of the products of numbers pm a_(1),pma_(2),pma_(3),"....."pma_(n) taken two at a time is -sum_(i=1)^(n)a_(i)^(2) . Statement 2 The sum of products of numbers a_(1),a_(2),a_(3),"....."a_(n) taken two at a time is denoted by sum_(1le iltjlen)suma_(i)a_(j) .

Answer each question by selecting the proper alternative from those given below each question so as to make the statement true: The solution of the pair of linear equations a_(1)x+b_(1)y+c_(1)=0 and a_(2)x+b_(2)y+c_(2)=0 by corss-multiplication method is given by .................. x=(b_(2)c_(1)-b_(1)c_(2))/(a_(1)b_(2)-a_(2)b_(1)), y=(a_(1)c_(2)-a_(2)c_(1))/(a_(1)b_(2)-a_(2)b_(1)) x=(b_(1)c_(2)-b_(2)c_(1))/(a_(1)b_(2)-a_(2)b_(1)), y=(a_(1)c_(2)-a_(2)c_(1))/(a_(1)b_(2)-a_(2)b_(1)) x=(b_(2)c_(1)-b_(1)c_(2))/(a_(1)b_(2)-a_(2)b_(1)), y=(a_(2)c_(1)-a_(1)c_(2))/(a_(1)b_(2)-a_(2)b_(1)) x=(b_(1)c_(2)-b_(2)c_(1))/(a_(1)b_(2)-a_(2)b_(1)), y=(a_(2)c_(1)-a_(1)c_(2))/(a_(1)b_(2)-a_(2)b_(1))