Home
Class 12
MATHS
f(x)=log(e)abs(log(e)x). Find the domain...

`f(x)=log_(e)abs(log_(e)x)`. Find the domain of `f(x)`.

Text Solution

Verified by Experts

The correct Answer is:
`x in (0,1) cup (1,infty)`
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=sqrt(x^(2)-abs(x)-2) . Find the domain of f(x).

f(x)=sqrt((log(x-1))/(x^(2)-2x-8)) . Find the domain of f(x).

f(x) is a real valued function f(x) = (1)/(sqrt(5x-3)) . Find the domain of f(x).

f(x)=sqrt(2-abs(x))+sqrt(1+abs(x)) . Find the domain of f(x).

f(x)=log_(3)(5+4x-x^(2)) . find the range of f(x).

f(x)=sin^(-1)((3-2x)/5)+sqrt(3-x) .Find the domain of f(x).

If a function is defined as f(x)=sqrt(log_(h(x))g(x)) , where g(x)=|sinx|+sinx,h(x)=sinx+cosx,0lexlepi . Then find th domain of f(x) .

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f : R^(+)to R^(+), f(x)=(log x)/(sqrt(x)) . Find the intervals in which f(x) is increasing or decreasing.

f(x)=log_(x^(2)) 25 and g(x)=log_(x)5. Then f(x)=g(x) holds for x belonging to