Home
Class 12
MATHS
f(x)=log(x-[x]), where [*] denotes the g...

`f(x)=log(x-[x])`, where `[*]` denotes the greatest integer function. find the domain of f(x).

Text Solution

Verified by Experts

The correct Answer is:
`x in R-I`
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

Find the domain and range of the following function: f(x)=log_([x-1])sinx, where [ ] denotes greatest integer function.

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)= 1/sqrt([x]+x) , where [*] denotes the greatest integeral function less than or equals to x. Then, find the domain of f(x).

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.