Home
Class 12
MATHS
find the domain of f(x)=1/sqrt([x]^(2)-[...

find the domain of `f(x)=1/sqrt([x]^(2)-[x]-6)`, where `[*]` denotes the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
`x in (-infty,-2) cup (4,infty)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e r[] denotes the greatest integer function.

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

The number of points of discontinuity of f(x)=[2x]^(2)-{2x}^(2) (where [ ] denotes the greatest integer function and { } is fractional part of x) in the interval (-2,2) , is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Find the domain of function f(x)= (1)/([abs(x-1)]+[abs(7-x)]-6) where [*] denotes the greatest integral function .

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is