Home
Class 12
MATHS
f(x)=sin^(-1)[2x^(2)-3], where [*] deno...

`f(x)=sin^(-1)[2x^(2)-3]`, where `[*]` denotes the greatest integer function. Find the domain of f(x).

Text Solution

Verified by Experts

The correct Answer is:
`[-sqrt(5/2),-1] cup [1,sqrt(5/2)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.Then f(x) equal to (a){ π/2 ​ ,cosec^ (−1) 2}(b) π/2 (c)cosec^(-1) 2 (d)none of these

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

f(x)= 1/sqrt([x]+x) , where [*] denotes the greatest integeral function less than or equals to x. Then, find the domain of f(x).

The number of points of discontinuity of f(x)=[2x]^(2)-{2x}^(2) (where [ ] denotes the greatest integer function and { } is fractional part of x) in the interval (-2,2) , is