Home
Class 12
MATHS
If a function is defined as f(x)=sqrt(lo...

If a function is defined as `f(x)=sqrt(log_(h(x))g(x))`, where `g(x)=|sinx|+sinx,h(x)=sinx+cosx,0lexlepi`. Then find th domain of `f(x)`.

Text Solution

Verified by Experts

The correct Answer is:
`x in [pi/6,pi/2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of f(x)=sqrt(log(cos(sinx)))

Domain of the function defined by f(x)= sqrt(4x-x^(2)) is……

f:R to R is a function defined by f(x)= 10x -7, if g=f^(-1) then g(x)=

f(x)=sinx+cosx+3 . find the range of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=sqrt((log(x-1))/(x^(2)-2x-8)) . Find the domain of f(x).

if: f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the range of f(x)

The domain of the function defined by f(x)=sin^(-1)(sqrt(x-1)) is _____

f(x)= 1/sqrt([x]+x) , where [*] denotes the greatest integeral function less than or equals to x. Then, find the domain of f(x).

Given f(x)= sqrt(8/(1-x)+8/(1+x)) and g(x) = 4/(f(sinx))+4/(f(cosx)) then g(x) period is