Home
Class 12
MATHS
The range of the function f(x) = sin^(-1...

The range of the function `f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2]`, where [ . ] denotes the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
`{pi}`
Promotional Banner

Similar Questions

Explore conceptually related problems

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

Find the domain of function f(x)= (1)/([abs(x-1)]+[abs(7-x)]-6) where [*] denotes the greatest integral function .

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

If [sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]=1 , where [*] denotes the greatest integer function, then x in

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).