Home
Class 12
MATHS
Find the domain and range of f(x)=log[...

Find the domain and range of `f(x)=log[ cos|x|+1/2]`,where [.] denotes the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
Range of f(x)={0}
and domain `in cup [(2npi-pi/3)","(2npi+pi/3)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

Find the domain and range of the following function: f(x)=log_([x-1])sinx, where [ ] denotes greatest integer function.

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e r[] denotes the greatest integer function.