Home
Class 12
MATHS
Determine whether function, f(x)=(-1)^([...

Determine whether function, `f(x)=(-1)^([x])` is even, odd or neither of two (where `[*]` denotes the greatest integer function).

Text Solution

Verified by Experts

The correct Answer is:
f is an even function when x `in` integer f is an odd function when x `notin ` integer.
Promotional Banner

Similar Questions

Explore conceptually related problems

Range of greatest integer function is…….

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

Sketch the curves (ii) y=[x]+sqrt(x-[x]) (where [.] denotes the greatest integer function).

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)