Home
Class 12
MATHS
f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-co...

`f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x` then f and g are identical?

Text Solution

Verified by Experts

The correct Answer is:
Identical
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos^(2)x+sec^(2)x, then

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)) then f'(1) equals

f(x)=cot^(- 1)(x^2-4x+5) then range of f(x) is equal to :

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

f(x) = cot^(-1)x: R^(+) rarr (0,pi) and g(x) = 2x-x^(2): R rarrR then the range of f(g(x)) is ...........

Show that int_(0)^(a)f(x)g(x)dx=2int_(0)^(a)f(x)dx , if f and g are defined as f (x) = f (a - x) and g(x) + g(a - x) = 4

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

f : R rarr R , f(x) = cos x and g : R rarr R , g(x) = 3x^(2) then find the composite functions gof and fog.

If cot^(-1)x-cot^(-1)y=0andcos^(-1)x+cos^(-1)y=pi/2 then x + y = _______