Home
Class 12
MATHS
f(x)=log(e)x, g(x)=1/(log(x)e) . Identic...

`f(x)=log_(e)x, g(x)=1/(log_(x)e)` . Identical function or not?

Text Solution

Verified by Experts

The correct Answer is:
Not Identical
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=In" "e^(x), g(x)=e^(Inx) . Identical function or not?

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?

f(x)=log_(x^(2)) 25 and g(x)=log_(x)5. Then f(x)=g(x) holds for x belonging to

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x) .

f(x)=(x)/(log_(x)e) is increasing on the interval ……, where x inR^(+)-{1} .

Which pair of functions is identical? (a)sin^(-1)(sinx) ,sin(sin^(-1)x) (b) log_(e)e^(x),e^(log_(e)x) (c) log_(e)x^(2),2log_(e)x (d)None of the above

If f(x)=|log_(e)|x||," then "f'(x) equals

If f(x)=log_x(lnx) then f'(x) at x=e is

Which of following functions have the same graph? (a) f(x)=log_(e)e^(x) (b) h(x)=cot^(-1)(cotx) (c) k(x)=lim_(n rarr infty)(2abs(x))/pi tan^(-1)(nx)