Home
Class 12
MATHS
f(x)=1/abs(x), g(x)=sqrt(x^(-2)) , ident...

`f(x)=1/abs(x), g(x)=sqrt(x^(-2))` , idential or not?

Text Solution

Verified by Experts

The correct Answer is:
Identical
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)= sqrt(1+x^(2)) then,

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?

The domain of the function f defined by f(x)= sqrt(4-x) + (1)/(sqrt(x^(2)-1)) is equal to

If f(x)=2x+abs(x),g(x)=1/3(2x-abs(x)) and h(x)=f(g(x)), domain of underbrace(sin^(-1)(h(h(h(h...h(x)...)))))_("n times") is (a)[-1,1] (b) [ − 1 ,-1/2] − [1/ 2 ] ∪ [ 1/ 2 , 1 ](c) [ − 1 , − 1/ 2 ](d) [ 1/ 2 , 1 ]

f(x)=sqrt(2-abs(x))+sqrt(1+abs(x)) . Find the domain of f(x).

f(x)= (1)/((x-1) (x-2)) and g(x)= (1)/(x^(2)) . Find the points of discontinuity of the composite function f(g(x))?

f(x) and and g(x) are identical or not ? f(x)=Sec^(-1)x+Cosec^(-1)x,g(x)=pi/2

If f(x) = (x + 1)/(x-1) and g(x) = (1)/(x-2) , then (fog)(x) is discontinuous at

f(x)=sqrt((log(x-1))/(x^(2)-2x-8)) . Find the domain of f(x).