Home
Class 12
MATHS
Consider the real-valued function satisf...

Consider the real-valued function satisfying `2f(sinx)+f(cosx)=xdot` then the
(a) domain of `f(x)i sR`
(b) domain of `f(x)i s[-1,1]`
(c) range of `f(x)` is `[-(2pi)/3,pi/3]`
(d) range of `f(x)i sR`

Text Solution

Verified by Experts

The correct Answer is:
Domain `in` [-1,1] and range `in [(-2pi)/3,pi/3]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6).

f(x) is a real valued function f(x) = (1)/(sqrt(5x-3)) . Find the domain of f(x).

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If f(x)=(a-x)/(a+x) , the domain of f^(-1)(x) contains

Find domain for f(x)=[sinx] cos(pi/([x-1])) .

f(x)=x/(1+x^(2)) . Find range of f(x).

f(x)=(x-1)/(x^(2)-2x+3) Find the range of f(x).

Find range and domain of f(x)=sqrt(s i n^-1(log_2x))

The domain of the function f(x)=max{sin x, cos x} is (-infty, infty) . The range of f(x) is

The domain of the function f(x) is denoted by D_(f)