Home
Class 12
MATHS
f(x)={{:(x-1",", -1 le x 0),(x^(2)",",0 ...

`f(x)={{:(x-1",", -1 le x 0),(x^(2)",",0 lt x le 1):}` and g(x)=sinx. Find `h(x)=f(abs(g(x)))+abs(f(g(x))).`

Text Solution

Verified by Experts

The correct Answer is:
h(x)=`{{:(sin^(2)x-sinx+1",", -1 lt x lt 0),(2sin^(2)x",", 0 lt x le 1):}`
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x)=f(x)={{:(x-1",",-1lexle0),(x^(2)",", 0lexle1):} and " "g(x)=sinx. If h_(1)(x)=f(|g(x)|) " and "h_(2)(x)=|f(g(x))|. Which of the following is not true about h_(2)(x) ?

If f(x) = {{:(x - 3",",x lt 0),(x^(2) - 3x + 2",",x ge 0):} , then g(x) = f(|x|) is

f(x)= {(2x",","if" x lt 0),(0",","if" 0 le x le 1),(4x",","if" x gt 1):}

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

f(x)= {(-2",","if" x le -1),(2x",","if" -1 lt x le 1),(2",","if " x gt 1):}

f(x)= {(|x+1|",",x lt -2),(2x+3",",-2 le x lt 0),(x^(2) + 3",",0 le x lt 3),(x^(3)-15,3 le x):} . Find at which points, the function f(x) is discontinuous ?

The relation f is defined by f(x)={{:(,x^(2), 0 le x le 3),(,3x,3 le x le 10):} The relation g is defined by g(x)={{:(,x^(2),0 le x le 2),(,3x,2 le x le 10):} Show that f is a function and g is not a function.

Let f(x)={{:(x^(2)-4x+3",", x lt 3),(x-4",", x ge 3):} and g(x)={{:(x-3",", x lt 4),(x^(2)+2x+2",", x ge4):} , which one of the following is/are true?(f+g)(3.5)=0 f(g(3))=3,f(g(2))=1,(f-g)(4)=0

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

f(x)=abs(x-1)+abs(x-2), -1 le x le 3 . Find the range of f(x).