Home
Class 12
MATHS
The range of the function f(x)=(e^(x)*...

The range of the function
`f(x)=(e^(x)*logx*5^(x^(2)+2)*(x^(2)-7x+10))/(2x^(2)-11x+12)` is

A

`(-infty,infty)`

B

`[0,infty)`

C

`(3/2,infty)`

D

`(3/2,4)`

Text Solution

Verified by Experts

The correct Answer is:
A

`f(x)=(e^(x)*logx*5^(x^(2)+2)*(x^(2)-7x+10))/(2x^(2)-11x+12)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Range of the function f(x)= (x^(2) + x + 2)/(x^(2) + x + 1) is……

Find the range of the function f(x)= sqrt(25-x^(2))

Integrate the functions x^(2)logx

Find the range of the function f(x)=cot^(-1)(log)_(0. 5)(x^4-2x^2+3)

Find the domain of the function f(x) =(x^(2)+2x+1)/(x^(2)-8x+12)

The range of a function f(x)=tan^(-1){log_(5//4)(5x^(2)-8x+4)} is

Integrate the functions x(logx)^(2)

Find the domain of the function f(x)=(x^(2)+3x+5)/(x^(2)-5x+4)

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

The domain of the function f given by f(x)= (x^(2) + 2x + 1)/(x^(2)-x-6)