Home
Class 12
MATHS
The domain of definition of function f...

The domain of definition of function
`f(x)=log(sqrt(x^(2)-5x-24)-x-2)`, is

A

`(-infty,-3]`

B

`(-infty,-3] cup [8, infty)`

C

`(-infty,(-28)/9)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of definition of the function f(x)= sin^(-1){log_(2)((x^(2))/(2))} , is

The domain of definition of f(x) = (log_2(x+3))/(x^2+3x+2)

The domain of the function f(x)=sqrt(x^(2)-5x+6)+sqrt(2x+8-x^(2)) , is

The domain of the function f(x)=log_(10)(sqrt(x-4)+sqrt(6-x)) is

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

Find the domain of definition the following function: f(x)=log_(10)(1-log_7(x^2-5x+13))+cos^(-1)(3/(2+sin\ (9pi)/2))

Find domain of the function f(x)=1/(log_10 (1-x)) +sqrt(x+2)

The domain of the function f given by f(x)= (x^(2) + 2x + 1)/(x^(2)-x-6)

Domain of the function defined by f(x)= sqrt(4x-x^(2)) is……

Find the domain of the function f(x)=(x^(2)+3x+5)/(x^(2)-5x+4)