Home
Class 12
MATHS
If f(x) is continuous such that abs(f(x)...

If f(x) is continuous such that `abs(f(x)) le 1, forall x in R " and " g(x)=(e^(f(x))-e^(-abs(f(x))))/(e^(f(x))+e^(-abs(f(x)))),` then range of g(x) is

A

[0,1]

B

`[0,(e^(2)+1)/(e^(2)-1)]`

C

`[0,(e^(2)-1)/(e^(2)+1)]`

D

`[(1-e^(2))/(1+e^(2)),0]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = (e^(x)-e^(-x))/(e^(x)+e^(-x))+2 . The inverse of f(x) is ........

If f(x) - g(x) is constant then f'(x) = g'(x)

Let f(x)=abs(x-1)+abs(x-2)+abs(x-3)+abs(x-4), then least value of f(x) is

f(x)=x/(1+x^(2)) . Find range of f(x).

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

f(x)=sqrt(x^(2)-abs(x)-2) . Find the domain of f(x).

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x) .

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

f(x)=sqrt(2-abs(x))+sqrt(1+abs(x)) . Find the domain of f(x).