Home
Class 12
MATHS
The domain of the function f(x)=sin^(-...

The domain of the function
`f(x)=sin^(-1)""(1)/abs(x^(2)-1)+1/sqrt(sin^(2)x+sinx+1)` is

A

`(-infty, infty)`

B

`(-infty,-sqrt(2)] cup [sqrt(2), infty)`

C

`(-infty,-sqrt(2)] cup [sqrt(2),infty) cup {0}`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function cos^(-1)(2x-1) is _____

Find the domain of the function f(x) =(x^(2)+2x+1)/(x^(2)-8x+12)

The domain of the function defined by f(x)=sin^(-1)(sqrt(x-1)) is _____

The domain of derivative of the function f(x)=abs(sin^(-1)(2x^(2)-1)) , is

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

Integrate the functions (sin^(-1)x)/(sqrt(1-x^(2)))

The domain of definition of the function f(x)= sin^(-1){log_(2)((x^(2))/(2))} , is

Integrate the functions sin^(-1)((2x)/(1+x^(2)))

Find the range of the function " " f(x)=(sin^(2)x+sinx-1)/(sin^(2)x-sinx+2) .

Find domain of the function f(x)=1/(log_10 (1-x)) +sqrt(x+2)