Home
Class 12
MATHS
The domain of derivative of the function...

The domain of derivative of the function
`f(x)=abs(sin^(-1)(2x^(2)-1))`, is

A

(-1,1)

B

`(-1,1)~{0,pm 1/sqrt(2)}`

C

`(-1,1)~{0}`

D

`(-1,1)~{pm 1/sqrt(2)}`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of definition of the function f(x)= sin^(-1){log_(2)((x^(2))/(2))} , is

Find the derivative of the function given by f(x)= sin x^(2)

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real-valued x is (a). [-1/4,1/2] (b) [-1/2,1/2] (c) (-1/2,1/9) (d) [-1/4,1/4]

The domain of the derivative of the function f(x)={t a n^(-1)x ,if|x|lt=1 1/2(|x|-1),if|x|>1 R-{0} b. R-{1} c. R-{-1} d. R-{-1,1}

The domain of the function f(x)=sin^(-1)""(1)/abs(x^(2)-1)+1/sqrt(sin^(2)x+sinx+1) is

Find the domain of the function f(x) =(x^(2)+2x+1)/(x^(2)-8x+12)

The domain of definition of function f(x)=log(sqrt(x^(2)-5x-24)-x-2) , is

The domain of the function defined by f(x)=sin^(-1)(sqrt(x-1)) is _____

The domain of the function f(x)=sqrt(x^(2)-5x+6)+sqrt(2x+8-x^(2)) , is