Home
Class 12
MATHS
f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x...

`f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3)` is

A

an odd function

B

an even function

C

a periodic function

D

f(0)=f(1)

Text Solution

Verified by Experts

The correct Answer is:
B, C, D
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Prove that, cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2) .

f(x)= sin^(2)x + sin^(2) (x + (pi)/(3)) + cos x cos (x + (pi)/(3)) and g(5 / 4)' =1 then (gof)(x) = ………

Knowledge Check

  • f(x)= sin^(2)x + sin^(2) (x + (pi)/(3)) + cos x cos (x + (pi)/(3)) then f'(x) = ………

    A
    1
    B
    `cos^(2)x`
    C
    0
    D
    sin 2x
  • Similar Questions

    Explore conceptually related problems

    Prove that cos ^(2) x + cos ^(2) (x + (pi)/(3) + cos ^(2) (x - (pi)/(3)) = 3/2.

    Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

    cos(2pi -x) cos (-x) - sin(2pi +x) sin (-x) = 0

    cos(2pi -x) cos (-x) - sin(2pi +x) sin (-x) = 0

    (x^(2)cos(pi)/(4))/(sinx)

    Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x) = pi If x satisfies the equation a x^3+b x^2+c x-1=0, then the value of (b-a-c) is_________

    Find the number of solutions of sin^(2) x cos^(2)x=1+cos^(2)xsin^(4) x in the interval [0,pi]