Home
Class 12
MATHS
Let f(x)=abs(x-1)+abs(x-2)+abs(x-3)+abs(...

Let `f(x)=abs(x-1)+abs(x-2)+abs(x-3)+abs(x-4),` then least value of f(x) is

A

least value of f(x) is 4

B

least value is not attained at unique point

C

the number of integral solution of f(x)=4 is 2

D

the value of `(f(pi-1)+f(e))/(2f(12/5))` is 1

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals

f(x)=abs(x-1)+abs(x-2), -1 le x le 3 . Find the range of f(x).

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1).x then (a)domain of f(x) is x ge 1 (b)domain of f(x) is [1,infty)-{2} ?(c)f'(10)=1(d)f'(3/2)=-1

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'(0), is

Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hrarr0)(f^(2)(x+h)-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)(u.v) is

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

Let f(x)= sqrt(1+x^(2)) then,

If f(x) is continuous such that abs(f(x)) le 1, forall x in R " and " g(x)=(e^(f(x))-e^(-abs(f(x))))/(e^(f(x))+e^(-abs(f(x)))), then range of g(x) is

f(x)=sqrt(x^(2)-abs(x)-2) . Find the domain of f(x).