Home
Class 12
MATHS
If [x] denotes the greatest integer func...

If [x] denotes the greatest integer function then the extreme values of the function
`f(x)=[1+sinx]+[1+sin2x]+...+[1+sin nx], n in I^(+), x in (0,pi)` are

A

(n-1)

B

n

C

(n+1)

D

(n+2)

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function, then lim_(xto0) [(x^2)/(tanx sin x)] , is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Find the integrals of the functions (cosx-sinx)/(1+sin2x)

If [sin^-1x]+[cos^-1x]=0, where x is a non negative real number and [.] denotes the greatest integer function, then complete set of values of x is - (A) (cos1 ,1) (B) (-1, cos1) (C) (sin1 , 1) (D) (cos1 , sin1)

Verify mean value theorem for each of the functions: f(x)= sin x- sin (2x), "in " x in [0, pi]

If f(x) = [x] , where [*] denotes greatest integral function. Then, check the continuity on (1, 2]

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

The set of extreme values of function f(x)=tanx , is . . . . . . ," "x inR-{(2k+1)(pi)/(2),k in Z} .

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) is