Home
Class 12
MATHS
If a function satisfies (x-y)f(x+y)-(x+y...

If a function satisfies `(x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)= 2`, then (a)f(x) must be polynominal function(b)f(3)=12 (c)f(0)=0 (d)f(x) may not be differentiable

A

f(x) must be polynominal function

B

f(3)=12

C

f(0)=0

D

f(x) may not be differentiable

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of underset(x to -oo)(lim)f(x) is

The number or linear functions f satisfying f(x+f(x))=x+f(x) AA x in RR is

If f(x-y),f(x)*f(y),f(x+y) are in A.P for all x,y in R " and " f(0) ne 0 , then (a) f'(x) is an even function (b)f'(1)+f'(-1)=0 (c)f'(2)-f'(-2)=0 (d)f'(2)-f'(-2)=0

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

If f is a function satisfying f (x +y) = f(x) f(y) for all x, y in N such that f(1) = 3 and sum _(x=1)^nf(x)=120 , find the value of n.

If f is a function satisfying f(x+y)=f(x)xxf(y) for all x ,y in N such that f(1)=3 and sum_(x=1)^nf(x)=120 , find the value of n .