Home
Class 12
MATHS
Let be a real valued function defined by...

Let be a real valued function defined by` f(x) =(e^x-e^(-|x|))/(e^x+e^|x|), ` then the range of `f(x)` is :
(A) R
(B) [0, 1]
(C) (0, 1)
(D) [0,0.5)

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = (e^(x)-e^(-x))/(e^(x)+e^(-x))+2 . The inverse of f(x) is ........

Let D be the domain of the real valued function f defined by f(x) = sqrt(25-x^2) . Then , write D .

The function f(x)= e^(|x|) is

Let the function f ; R-{-b}->R-{1} be defined by f(x) =(x+a)/(x+b),a!=b, then

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

The function f is defined by f(x)={(,1-x,x lt 0),(,1,x=0),(,x+1,x gt 0):} Draw the graph of f(x).

(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx = 0

Show that the function given by f(x)=e^(2x) is increasing on R.

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for