Home
Class 12
MATHS
bb"Statement I" The period of f(x)=2cos"...

`bb"Statement I"` The period of `f(x)=2cos""1/3(x-pi)+4sin""1/3(x-pi) " is " 3pi`.
`bb"Statement II"` If T is the period of f(x), then the period of f(ax+b) is `T/abs(a)`.

Text Solution

Verified by Experts

The correct Answer is:
d
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the period of f(x)=cos^(-1)(cos x)

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

Period of f(x) = sin^4 x + cos^4 x

Find period of f(x)=tan3x+sin(x/3) .

bb"Statement I" The range of log(1/(1+x^(2))) " is " (-infty,infty) . bb"Statement II" " when " 0 lt x le 1, log x in (-infty,0].

bb"Statement I" The range of f(x)=sin(pi/5+x)-sin(pi/5-x)-sin((2pi)/5+x)+sin((2pi)/5-x) is [-1,1]. bb"Statement II " cos""pi/5-cos""(2pi)/5=1/2

bb"Statement I" The equation f(x)=4x^(5)+20x-9=0 has only one real root. bb"Statement II" f'(x)=20x^(4)+20=0 has no real root.

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

The period of sin""(pi[x])/12+cos""(pi[x])/4+tan""(pi[x])/3 , where [x] represents the greatest integer less than or equal to x is

Let f(x)=sin x bb"Statement I" f is not a polynominal function. bb"Statement II" nth derivative of f(x), w.r.t. x, is not a zero function for any positive integer n.