Home
Class 12
MATHS
f is a function defined on the interval ...

f is a function defined on the interval [-1,1] such that f(sin2x)=sinx+cosx. `bb"Statement I"` If `x in [-pi/4,pi/4]`, then `f(tan^(2)x)=secx` `bb "Statement II" f(x)=sqrt(1+x), forall x in [-1,1]`

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:X rarr Y be a function defined by f(x)=2sin(x+pi/4)-sqrt(2)cosx+c. bb"Statement" For set X,x in [0,pi/2] cup [pi,(3pi)/2] , f(x) is one-one function. bb"Statement II" f'(x) ge 0,x in [0,pi/2]

bb"Statement I" The range of log(1/(1+x^(2))) " is " (-infty,infty) . bb"Statement II" " when " 0 lt x le 1, log x in (-infty,0].

bb"Statement I" The equation f(x)=4x^(5)+20x-9=0 has only one real root. bb"Statement II" f'(x)=20x^(4)+20=0 has no real root.

Let f(x)=sin x bb"Statement I" f is not a polynominal function. bb"Statement II" nth derivative of f(x), w.r.t. x, is not a zero function for any positive integer n.

If f(x)=sin^(-1)((2x)/(1+x^(2))), then Statement I The value of f(2)=sin^(-1)((4)/(5)) . Statement II f(x)=sin^(-1)((2x)/(1+x^(2)))=-2, for xlt1

If f'(x)=sinx+sin4x.cosx, then f'(2x^(2)+pi/2) is

Show that f(x)=tan^(-1)(sin x + cos x) is an increasing function in (0, (pi)/(4)) .

The domain of the function defined by f(x)=sin^(-1)(sqrt(x-1)) is _____

Range of f(x) =sin^-1(sqrt(x^2+x+1)) is

Let F(x) be an indefinite integral of sin^(2)x Statement-1: The function F(x) satisfies F(x+pi)=F(x) for all real x. because Statement-2: sin^(2)(x+pi)=sin^(2)x for all real x. A) Statement-1: True , statement-2 is true,statement-2 is correct explanation for statement-1 (b) statement-1 true, statement-2 true and Statement -2 is not a correct explanation for statement -1 c) Statement-1 is True, Statement -2 is False. D) Statement-1 is False, Statement-2 is True.