Home
Class 12
MATHS
If x^2+y^2=4 then find the maximum value...

If `x^2+y^2=4` then find the maximum value of `(x^3+y^3)/(x+y)`

Text Solution

Verified by Experts

The correct Answer is:
6
Promotional Banner

Similar Questions

Explore conceptually related problems

If x= 5 and y=2 find the values of : (x^(y)+ y^(x) )

If x +y =a and x^(2) +y^(2)=b , then the value of (x^(3)+y^(3)) , is

Find maximum value of y=2x^(3)-24x+107 in [1, 3].

If (x+1, y-2)=(3,1), find the values of x and y.

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+(x^(4))/(4!)+...oo, then find the value of (dy)/(dx) .

If (2.3)^x = (0.23)^y = 1000 , then find the value of 1/x- 1/y

If 4x+i(3x-y)(3x-y)=3+i(-6) then find the value of x and y.

If (x^(4)+2x.i )-(3x^(2)-iy)=(3-5i)+(1+2iy) then find the real value of x and y.

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

Given that y=2[x]+3 and y=3[x-2]+5 then find the value of [x+y]