Home
Class 12
MATHS
If f(x) is a polynominal of degree 4 wit...

If f(x) is a polynominal of degree 4 with leading coefficient '1' satisfying f(1)=10,f(2)=20 and f(3)=30, then `((f(12)+f(-8))/(19840))` is …………. .

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is a polynomial of degree 5 with real coefficients such that f(|x|)=0 has 8 real roots, then f(x)=0 has

f(x) is a polynomial of degree 4 with real coefficients such that f(x)=0 is satisfied by x=1,2,3 only, then f'(1).f'(2).f'(3) is equal to

If f'(x)=x^(2)+5 and f(0)=-1 then f(x)=...

If f'(x)=sqrtx and f(1)=2 then find f(x).

If f(x) is a polynomial function satisfying f(x)dotf(1/x)=f(x)+f(1/x) and f(4)=65 ,then find f(6)

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0 then find f(x).

If f'(x)=1-(4)/(x^(2)) and f(1)=6 then find f(x) and f(2).

If f'(x)=x-(1)/(x^(2)) and f(1)=(1)/(2) then find f(x).

If f(x) is a differntiable function satisfying the condition f(100x)=x+f(100x-100), forall x in R and f(100)=1, then f(10^(4)) is

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))