Home
Class 12
MATHS
Let f(x) be a function such that , f(x-1...

Let f(x) be a function such that , `f(x-1)+f(c+1)=sqrt(3)f(x), forall x in R`. If f(5)=100, find `sum_(r=0)^(99)f(5+12r)`.

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a function such that : f(x - 1) + f(x + 1) = sqrt3 f(x), for all x epsilon R. If f(5) = 100, then prove that the value of sum_(r=o)^99 f(5 + 12r) will be equal to 10000.

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f(a-y)+f(y)f(a-x), forall x,y in R , then for some real a, (a)f(x) is a periodic function (b)f(x) is a constant function (c) f(x)=1/2 (d) f(x)=(cosx)/2

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

Let f : (0, oo) rarr R be a continuous function such that f(x) = int_(0)^(x) t f(t) dt . If f(x^(2)) = x^(4) + x^(5) , then sum_(r = 1)^(12) f(r^(2)) , is equal to

Let f and g be real - valued functions such that f(x+y)+f(x-y)=2f(x)*g(y), forall " x , y " in R. Prove that , if f(x) is not identically zero and abs(f(x)) le 1, forall x in R, then abs(g(y)) le 1, forall y in R.

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

f(x) is a real valued function f(x) = (1)/(sqrt(5x-3)) . Find the domain of f(x).

Range of the function f: R rarr R, f(x)= x^(2) is………

Let f:R rarr R be a continuous function such that f(x)-2f(x/2)+f(x/4)=x^(2) . f'(0) is equal to