Home
Class 12
MATHS
If f^2(x)*f((1-x)/(1+x))=x^3, [x!=-1,1 a...

If `f^2(x)*f((1-x)/(1+x))=x^3, [x!=-1,1 and f(x)!=0],` then find `|[f(-2)]|` (where [] is the greatest integer function).

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f'(x)=sqrtx and f(1)=2 then find f(x).

f:(2,4)rarr(1,3),f(x) = x - [(x)/2] , where [.] is a greatest integer function then f^(-1)(x) = ......

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.