Home
Class 12
MATHS
Let n be a positive integer with f(n) = ...

Let `n` be a positive integer with `f(n) = 1! + 2! + 3!+.........+n! and p(x),Q(x)` be polynomial in `x` such that `f(n+2)=P(n)f(n+1)+Q(n)f(n)` for all `n >=1 ,` Then p(2)=

Text Solution

Verified by Experts

The correct Answer is:
P(x)=x+3 and Q(x)=-x-2
Promotional Banner

Similar Questions

Explore conceptually related problems

P(n) : n (n+1) is even number then P(3) = .........

If f(1) = 1, f(n+1)= 2f (n) + 1, n ge 1 then f(n) = .........

Let f be a function from the set of positive integers to the set of real number such that f(1)=1 and sum_(r=1)^(n)rf(r)=n(n+1)f(n), forall n ge 2 the value of 2126 f(1063) is ………….. .

Let f:N rarr R be such that f(1)=1 and f(1)+2f(2)+3f(3)+…+nf(n)=n(n+1)f(n), for n ge 2, then (2010f(2010)) is ……….. .

If P(n) : 2n lt n! , n in N , then P(n) is true for all n gt= ………….. .

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

Using mathematical induction prove that (d)/(dx) (x^(n))= n x^(n-1) for all positive integers n.

if .^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10 , then .^(n)P_(3) equals

If f is a function satisfying f(x+y)=f(x)xxf(y) for all x ,y in N such that f(1)=3 and sum_(x=1)^nf(x)=120 , find the value of n .