Home
Class 12
MATHS
Solve 1/[x]+1/([2x])= {x}+1/3where [.] d...

Solve 1/[x]+1/([2x])= {x}+1/3where [.] denotes the greatest integers function and{.} denotes fractional part function.

Text Solution

Verified by Experts

The correct Answer is:
Possible solutions are `29/12,19/6,97/24`
Promotional Banner

Similar Questions

Explore conceptually related problems

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

Sum of all the solution of the equation ([x])/([x-2])-([x-2])/([x])=(8{x}+12)/([x-2][x]) is (where{*} denotes greatest integer function and {*} represent fractional part function)

The number of points of discontinuity of f(x)=[2x]^(2)-{2x}^(2) (where [ ] denotes the greatest integer function and { } is fractional part of x) in the interval (-2,2) , is

Solve the equation [x]{x}=x, where [] and {} denote the greatest integer function and fractional part, respectively.

Sketch the curves (iii) y=|[x]+sqrt(x-[x])| (where [.] denotes the greatest integer function). (where [.] denotes the greatest integer function).

Let f:NrarrN be a function such x-f(x)=19[(x)/(19)]-90[(f(x))/(90)],AAx in N , where [.] denotes the greatest integer function and [.] denotes the greatest integers function and 1900ltf(1990)lt2000 , then possible value of f(1990) is

Number of points of non-differentiability of the function g(x) = [x^2]{cos^2 4x} + {x^2}[cos^2 4x] +x^2 sin^2 4x + [x^2][cos^2 4x] + {x^2}{cos^2 4x} in (-50, 50) where [x] and {x} denotes the greatest integer function and fractional part function of x respectively, is equal to :

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.