Home
Class 12
MATHS
Consider the function f(x)={{:(x=[x]-(1)...

Consider the function `f(x)={{:(x=[x]-(1)/(2)","," if "x in I),(0","," if "x in I):}` Where `[.]` denotes greatest integer function and I is the set of integers, then `g(x)=max{x^(2), f(x),|x|},-2le x le2` is defined as

Text Solution

Verified by Experts

The correct Answer is:
`g(x)={{:(x^(2)",", -2 le x le -1),(-x",", -1 le x le -1//4),(x+1/2",", -1/4 le x le 0),(x",", 0 le x le 1),(x^(2)",", 1 le x le 2):}`
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x)={{:(x-[x]-(1)/(2),x !in),(0, "x inI):} where [.] denotes the fractional integral function and I is the set of integers. Then find g(x)max.[x^(2),f(x),|x|},-2lexle2.

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then (x) is continuous at x=2

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

If f(x) = {{:([cos pi x]",",x le 1),(2{x}-1",",x gt 1):} , where [.] and {.} denotes greatest integer and fractional part of x, then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

Determine whether function, f(x)=(-1)^([x]) is even, odd or neither of two (where [*] denotes the greatest integer function).

lim _(x rarr 1) (xsin(x−[x])) /(x-1) ​ , where [.] denotes the greatest integer function, is equal to