Home
Class 12
MATHS
If f(x)=sinx+cosx, g(x)=x^(2)-1, then g{...

If `f(x)=sinx+cosx, g(x)=x^(2)-1`, then `g{f(x)}` is invertible in the domain

A

A) `[0,pi/2]`

B

B) `[-pi/4,pi/4]`

C

C) `[-pi/2,pi/2]`

D

D) `[0,pi]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

If f(x)= sqrtx and g(x)= x be two functions defined in the domain R^(+) uu {0} , then find the value of (f+g) (x) .

f(x)=sinx+cosx+3 . find the range of f(x).

If f'(x)=sinx+sin4x.cosx, then f'(2x^(2)+pi/2) is

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x then f and g are identical?

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

f(x)=secx, g(x)=1/cosx Identical or not?

If f(x)=(a-x)/(a+x) , the domain of f^(-1)(x) contains