Home
Class 12
MATHS
Suppose f(x)=(x+1)^2forxgeq-1. If g(x) i...

Suppose `f(x)=(x+1)^2forxgeq-1.` If `g(x)` is the function whose graph is the reflection of the graph of `f(x)` with respect to the line `y=x ,` then `g(x)` equal. `(a)-sqrt(x)-1,xgeq0` (b) `1/((x+1)^2),x >-1` (c)`sqrt(x+1,)xgeq-1` (d) `sqrt(x)-1,xgeq0`

A

`1-sqrt(x)-1, x ge 0`

B

`1/((x+1)^(2)), x gt -1`

C

`sqrt(x+1), x ge -1`

D

`sqrt(x)-1, x ge 0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of f(x)=sqrt(x-1)+sqrt(5-x)

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

Let f(x)= sqrt(1+x^(2)) then,

If f(x) = (x + 1)/(x-1) and g(x) = (1)/(x-2) , then (fog)(x) is discontinuous at

"tan"(cos^(-1)x) is equal to a. x/(1+x^2) b. (sqrt(1+x^2))/x c. (sqrt(1-x^2))/x d. sqrt(1-2x)

The domain of the function f defined by f(x)= sqrt(4-x) + (1)/(sqrt(x^(2)-1)) is equal to

f(x)= (1)/((x-1) (x-2)) and g(x)= (1)/(x^(2)) . Find the points of discontinuity of the composite function f(g(x))?