Home
Class 12
MATHS
Find the domain of definition of f(x)=(l...

Find the domain of definition of `f(x)=(log_(2)(x+3))/(X^(2)+3x+2)`.

A

`R//{-1,-2}`

B

`(-2,infty)`

C

`R//{-1,-2,-3}`

D

`(-3,infty)//{-1,-2}`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=(x^(2)+3x+5)/(x^(2)-5x+4)

Find the domain of the function f(x) =(x^(2)+2x+1)/(x^(2)-8x+12)

Find the domain of the function, f(x)=log{log_(abs(sinx)){x^(2)-8x+23)-(3)/(log_(2)abs(sinx))} .

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

If f(x) is defined in [-3,2], find the domain of definition of f([(abs(x)]) " and " f([2x+3]).

Find domain of the function f(x)=1/(log_10 (1-x)) +sqrt(x+2)

Find the domain of definition the following function: f(x)=log_(10)(1-log_7(x^2-5x+13))+cos^(-1)(3/(2+sin\ (9pi)/2))

The domain of definition of function f(x)=log(sqrt(x^(2)-5x-24)-x-2) , is

The domain of definition of the function f(x)= sin^(-1){log_(2)((x^(2))/(2))} , is

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)